EVENTS

Emergent space-time meets emergent quantum phenomena

Editor: 李嘉宁     Time: 2022-09-27      Number of visits: 56

Title:Emergent space-time meets emergent quantum phenomena  

Reporter:Jinwu Ye, Mississippi State university/West Lake university

Place: Room 215, Haina Building, Zijingang Campus

Time: 15:30-16:30(Beijing time), Friday, 30 September, 2022

 

Abstract

P.W. Anderson said  More is different . It says the macroscopic quantum phenomena such as--superfluids, superconductors, quantum anti-ferromagnetism, fractional quantum Hall states, etc.--emerge as the number of interacting particles gets more and more. However, he left the question how these emergent quantum or topological phenomena change under different inertial frames. In this colloquium, we try to address this outstanding problem. We propose there is an emergent space-time corresponding to any emergent quantum phenomenon, especially near a quantum/topological phase transition (QPT).  We demonstrate this new emergent space-time structure by studying one of the simplest QPTs: Superfluid (SF)-Mott transitions of interacting bosons in a square lattice observed in a frame moving with a constant velocity  vrelative to the underlaying lattice. By constructing effective actions and performing microscopic calculations on a lattice, we find that the new emergent space-time leads to several new effects in the moving frame such as the change of the ground state (the Mott phase near the QPT may turn into a SF phase, but not the other way around), the rising of the KT transition temperature, the change of the condensation momentum, the sign reverse of the Doppler shift in the excitation spectrum relative to the bare velocity , the emergence of new class of QPTs, etc. Contrast to the Doppler shifts in a relativistic quantum field theory, Unruh effects in an accelerating observer, emergent curved space-time from the Sachdev-Ye-Kitaev model are made. Doing various light or neutron scattering measurements in a moving sample may become an effective way not only measure various intrinsic properties of the materials, tune various quantum and topological phases through novel phase transitions, but also probe the new emergent space-time structure near any QPT.

 

References:

arXiv:2207.10475, arXiv:cond-mat/0512480 ( substantially revised version on July 15, 2022 ).


About the Reporter


Jinwu Ye

Mississippi State university/West Lake university

 

Prof. Ye received his Ph.D. from Yale University. Now he is a Professor at Mississippi state university. He has been a long-term visitor at the Institute for Theoretical Sciences, Westlake University since last Fall. He is a condensed matter theorist working on the interdisciplinary field of condensed matter, quantum optics, cold atoms, non-relativistic quantum field theory and conformal field theory. Recently, he is particularly interested to explore possible deep connections among quantum/topological phases, curved space-time, quantum black holes from material's point of views.

 

WELCOME!


Add: No. 8 Hainayuan Building, Zijingang Campus, Zhejiang University, 866 Yuhangtang Rd, Hangzhou, 310027, P.R. China   

Tel: +86-571-87953325

Fax: +86-571-87951895

Email: yongyi@zju.edu.cn

Copyright © 2018 School of Physics, Zhejiang University   Powered by: chingo      Login
Baidu
sogou